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bstract

No universally accepted ActiGraph accelerometer cutpoints for quantifying moderate-to-vigorous physical activity (MVPA) exist. Estimates
f MVPA from one set of cutpoints cannot be directly compared to MVPA estimates using different cutpoints, even when the same outcome
nits are reported (MVPA min d–1). The purpose of this study was to illustrate the utility of an equating system that translates reported
VPA estimates from one set of cutpoints into another, to better inform public health policy. Secondary data analysis. ActiGraph data from
large preschool project (N = 419, 3–6-yr-olds, CHAMPS) was used to conduct the analyses. Conversions were made among five different
ublished MVPA cutpoints for children: Pate (PT), Sirard (SR), Puyau (PY), Van Cauwengerghe (VC), and Freedson Equation (FR). A
0-fold cross-validation procedure was used to develop prediction equations using MVPA estimated from each of the five sets of cutpoints as
he dependent variable, with estimated MVPA from one of the other four sets of cutpoints (e.g., PT MVPA predicted from FR MVPA). The

ean levels of MVPA for the total sample ranged from 22.5 (PY) to 269.0 (FR) min d−1. Across the prediction models (5 total), the median
roportion of variance explained (R2) was 0.76 (range 0.48–0.97). The median absolute percent error was 17.2% (range 6.3–38.4%). The

rediction equations developed here allow for direct comparisons between studies employing different ActiGraph cutpoints in preschool-age
hildren. These prediction equations give public health researchers and policy makers a more concise picture of physical activity levels of
reschool-aged children.

2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Over the past two decades accelerometry-based activity
onitors (accelerometers) have become an accepted method

or measuring free-living physical activity across all pop-
lations. The use of accelerometers has helped advance
nowledge on the correlates of physical activity behaviors,1

rovided a more rigorous estimate of population levels of
2,3
hysical activity, and improved evaluations of behav-

oral interventions targeted at micro- and macro-levels.4,5

n fact, a cursory search on PubMed (February 2011) for
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accelerom*” and “physical activity” revealed 1924 articles.
ith such widespread use and expert opinions6–10 regarding

heir reliability, validity, and objectivity, accelerome-
ers have revolutionized the physical activity assessment
eld.

One of the primary features of accelerometers is their abil-
ty to process and segment data by time and intensity. This

akes it possible to produce estimates of the amount of time
pent in different intensities of physical activity. The public
ealth field has emphasized the importance of tracking time
pent in moderate-to-vigorous physical activity (MVPA), so
onsiderable work has been done to develop cutpoints that

efine the threshold for MVPA. A variety of equations and
utpoints have been developed, but differences in design
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Table 1
Demographic characteristics and MVPA estimates of preschool children
(N = 419).

Variable Mean SD

Sex (boys) 47.7%
Age (yrs) 4.2 0.6
Height (cm) 104.5 6.3
Weight (kg) 18.1 3.9
BMI percentile 63.4 28.3
Accelerometer estimates of MVPA (min/day)

Pate et al. 102.2 40.6
Puyau et al. 39.5 22.5
Sirard et al. 46.8 27.6
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introduced cutpoints from Van Cauwengerghe et al. (VC),
Freedson et al. 269.0 70.8
Van Cauwenberghe et al. 64.3 31.4

nd protocol of validation studies to develop cutpoints have
ended to produce largely disparate MVPA estimates.11

It is well documented that estimates of MVPA derived
rom one set of accelerometer cutpoints may vary con-
iderably from estimates derived from other cutpoints.12,13

his phenomenon, previously referred to as the “cut-
oint conundrum”,14 has led to considerable confusion
n the physical activity literature. Perhaps a more pre-
ise description of this conundrum is what we refer to
s “cutpoint non-equivalence.” The most significant prob-
em associated with cutpoint non-equivalence (CNE) is that
t prevents direct comparisons among studies employing
ifferent cutpoints, although such comparisons are fre-
uently made. A cornerstone of public health research
s the practice of aggregating data across studies such
hat important trends in health and disease may be
bserved. CNE does not allow for such practice. The
ssue of standardizing cutpoints and accelerometer process-
ng techniques was a theme of a 2009 (NIH-sponsored)
onsensus conference on objective activity monitoring
see http://conference.novaresearch.com/OMPA), however
o consensus was reached.

The ability to standardize outcome measures on a single
et of cutpoints would make it possible to compare outcome
easures from different studies. Moreover, such a technique

ould unify a large body of empirical studies and provide
better picture of population levels of MVPA. In essence,

uch a procedure would allow for a common language to
e used to evaluate between study estimates of MVPA. This
s similar to the idea of the Rosetta Stone, which is simply
omething that is used to translate information from numer-
us sources into a single metric. Past attempts have been
ade to develop a conversion system to translate estimates

f MVPA using different cutpoint criteria.15 Unfortunately,
his attempt did not use commonly employed cutpoints, but
ather used 10 different cutoffs in 100 counts/min increments
rom 3000 to 3900 counts/min. Because such cutpoints were
ot empirically developed, validated, or in reference to spe-

ific cutpoints applied in the literature, this substantially
imits the utility of this initial attempt15 given cutpoints range
ell below and above this counts/min range. Nevertheless,
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t should be noted that another solution to CNE would be
set of universally accepted cutpoints developed through a
ulti-site calibration/validation study using identical, rigor-

us protocols on sufficiently large and representative samples
f youth. This solution would in fact solve the problem, but
ould come at the cost of several years of labor and many mil-

ions of dollars. Until this happens, the pursuit of an equating
ystem, like the one proposed herein, is necessary. There-
ore, the purpose of this study was to illustrate the utility of
n equating system by developing prediction equations and
ssessing their accuracy using a cross-validation procedure16

n a large sample of preschool-age children.

. Methods

This is a secondary data analysis of an existing data set
The Children’s Activity and Movement in Preschool Study,
HAMPS) of 419 preschool children, age 3–5 years, from
olumbia, SC. Recruitment and data collection procedures
ave been described in detail elsewhere.17,18 This infor-
ation is briefly reviewed here. The sample consisted of

reschoolers (51% African American) attending twenty-two
ommercial, Religious or Head Start preschools from the
reater Columbia, South Carolina, area and served children
rom a variety of different types of backgrounds, including
rban, rural, low and high socioeconomic status. None of the
articipants had any physical limitations that restricted their
articipation in physical activity. Physical activity data were
ollected during two waves at each of the 22 preschools across
28-month period (August 2003–January 2006). The proto-
ols of CHAMPS were approved by the University of South
arolina Institutional Review Board and written informed
onsent was obtained from each child’s primary guardian
efore collection of any data.

Physical activity in this study was measured by the Acti-
raph accelerometer (ActiGraph model 7146; Pensacola,
L). All data were collected using 15 s intervals (epoch).
articipants wore the accelerometers on an elastic belt on

he right hip (anterior to the iliac crest). Children wore
onitors during the two-week monitoring period (weekdays

nd weekend days). Parents were instructed to remove the
ccelerometer only during water activities (bathing, swim-
ing) and when the child went to bed at night. For inclusion

n the current study, children were required to have at least
0 h/day of wear time and at least one complete day’s worth
f activity.

The four most common sets of ActiGraph accelerometer
utpoints used in the preschool age population were identified
rom an extensive literature search. The cutpoints were Pate
t al.19 (PT), Sirard et al.20 (SR), Puyau et al.21 (PY), and
he Freedson et al. equation9,22 (FR). Additionally, newly
pecifically developed for preschool-aged youth, were also
sed. Given that the 2009 consensus conference on objective
ctivity monitoring did not provide definitive conclusions

http://conference.novaresearch.com/OMPA
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bout which cutpoints are most appropriate, we developed
rediction equations that allow for any one set of cutpoints to
redict another. Because the original cutpoints from PY and
R were developed for epochs different (60 s) from the epoch
sed in the CHAMPS study (15 s), we reintegrated them
nto cutpoints for 15 s epochs. The reintegration procedure

ay over or underestimate MVPA, however the procedure
as been used extensively to accommodate differing cutpoint
poch length vs. the epoch of measurement.23–25 The specific
5 s cutoffs (counts/15 s) for MVPA for each set of cutpoints
re as follows: PT (≥420), SR (≥615 for 3 years; ≥812 for
years; ≥891 for 5 years), PY (800–1299), FR (92–632 for
years; 111–666 for 4 years; 131–703 for 5 years), and VC

≥585).
To develop prediction equations to convert estimates

f MVPA across the five sets of cutpoints, a 10-fold
ross-validation procedure was employed.16,26 This process
andomly divides the sample into 10 equal subgroups, with 9
ubgroups serving as the equation development sample and
he remaining subgroup serving as the cross-validation sam-
le. This procedure is repeated 10 times with each of the 10
ubgroups serving as the cross-validation sample. The model
stimates (see below) were averaged across the 10 repli-
ations. For the prediction equation development, random
ffects models, accounting for the nesting of multiple days
f measure within each child, were used to predict MVPA
rom one set of cutpoints from MVPA estimated from the
emaining sets of cutpoints (e.g., PT MVPA predicted from
R MVPA). In total, 10 comparisons among five different
ets of cutpoints were made.

The models were empirically derived with both linear
nd non-linear terms evaluated for potential inclusion in
he model. Moreover, common demographic characteristics
eported in studies were examined for inclusion in the mod-
ls. These included age (years), gender (1 = boys, 0 = girls),
MI, height (cm) and weight (kg). Criteria for inclusion were
significant change in the proportion of variance explained

R2) based on overall R2 change from nested models and the
esults of a log likelihood ratio test between nested models
e.g., the addition of a single predictor), and a reduction in the
verage error and absolute percent error. The average error
as calculated as[∑ (Y − Yprime)2

(N − 1)

]
.

here “Y” is the actual value and “Yprime” is the pre-
icted value.16 The absolute percent error was calculated as
(Y − Yprime)/Y] × 100.

Consideration was given to balancing the relative value
f increased precision with the need for simple conversions.
n instances where demographic characteristics added signifi-

antly to the model, two models were reported – one with only
VPA as the predictor (both linear and non-linear terms) and

he second with the inclusion of the demographic variable(s).
his was done in order to account for instances where demo-
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raphic characteristics are not uniformly reported across
tudies. Bland Altman plots27 were constructed on the vali-
ation sample to evaluate agreement between methods across
he range of activity levels. All analyses were conducted using
tata (v.10.0, College Station, TX).

. Results

The sample consisted of 419 preschoolers, of which 47.7%
ere boys, 51.1% African American, with an average age of
.2 yrs (SD = 0.6), and the average BMI percentile was 63.4%
SD = 28.3). The average MVPA in minutes per day across the
our sets of cutpoints ranged from 102.2 min d−1 PT (±40.6),
6.8 min d−1 PY (±27.6), 39.5 min d−1 SR (±22.5), 64.3 d−1

C (±31.5), and 269 min d−1 FR (±70.8). The estimates
rom the cross-validation random effects models predicting
T MVPA values across the different cutpoints are presented

n Table 1. Overall, a total of 10 models were estimated.
or most conversions, equations are provided for the sim-
le model (using only linear and non-linear terms), with
hree models including demographic characteristics. The
nly demographic variable that added significantly to the
odels based on the criteria outlined above was age (years).
cross the models, the median absolute percent error was
7.4%, with a minimum error of 6.3% (VC to PT) and a
aximum error of 38.4% (FR to SR). The proportion of vari-

nce explained ranged from R2 0.48 for estimating FR from
Y, to R2 0.97 for estimating VC from PT. Two Bland Altman
lots are presented that illustrate the comparison for the best
rediction equation (PT and VC) and the worst prediction
quation (PY and FR) (Fig. 1, all other plots are available
pon request). The mean difference for PT from VC was
.056 min, with −14.844 to 14.956 min as the lower and
pper bounds of the limits of agreement (LOA). For PY from
R the mean difference was −0.386 min (LOA −32.814 to
2.043).

. Discussion

Accelerometers represent a significant advancement in
easurement for the physical activity field. The systematic

se of accelerometers has provided a way to obtain objective
stimates of physical activity in. However, the confusion sur-
ounding CNE remains highly problematic. The problem is
nalogous to having body weight scales made by the same
anufacturer, but calibrated differently within different lab-

ratories, such that measures of body weight vary widely
cross laboratories. To then aggregate published BMI data
rom those laboratories in order to estimate population preva-
ence of overweight and obesity would bias such estimates,

resenting an unclear picture of the problem. The ideal solu-
ion of course would be to have widely adopted, identical
rocedures for calibrating scales. Short of that however, one
ould take the scale from the lab employing the most rig-
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Table 2
Prediction equations to transform estimates of MVPA from one set of cutpoints into MVPA estimated from another set of cutpoints.

Accelerometer cutpoint MVPA min d−1 Prediction equations† 10-fold cross validation§

Outcome variablea Predictor variable Intercept MVPA
min d−1

MVPA
min d−1

Squared

MVPA
min d−1

Square root

Age (years) Wear time‡ R2 Average error
(min d−1)b

Absolute
percent error c

Pate Puyau −27.07796 1.061643 −0.001669 10.41079 2.048583 0.88 11.1 11.8%
Puyau −3.189774 1.040246 −0.001703 11.16557 0.87 11.3 12.0%
Freedson 8.180722 0.3922986 0.0002284 −2.108117 0.75 15.8 17.4%
Freedson −40.03466 0.5757257 0.0001202 −4.559613 12.51481 0.78 14.4 15.8%
Freedson −21.6284 0.5976948 0.0001054 −4.264987 12.82377 −2.174009 0.78 14.3 15.5%
Sirard 5.152623 1.438485 2.246005 0.72 18.5 19.7%
Sirard −138.9017 0.5297728 −0.0001241 14.02476 23.64033 1.849608 0.86 12.5 13.4%
Sirard −118.9256 0.5321844 −0.0001937 14.50605 24.06562 0.84 12.7 13.7%
van Cauwenberghe 17.07271 1.279121 0.96 5.9 6.4%
van Cauwenberghe 3.41532 1.265061 1.085201 0.97 5.7 6.3%

Puyau Pate 6.879354 0.3215901 0.0007953 −0.72323 0.87 6.0 17.2%
Pate −1.631061 0.3065897 0.0008218 0.86 6.1 17.4%
Freedson 7.401612 0.1408477 0.0001596 −1.31163 0.48 11.9 37.8%
Freedson −37.00836 0.1004103 0.0001946 0.3095264 7.062028 0.52 11.5 36.5%
Freedson −24.83794 0.1181168 0.0001836 0.3915857 7.261133 −1.355968 0.52 11.4 36.1%
Sirard −0.5671588 0.8613491 0.015586 0.76 10.2 27.1%
Sirard −75.53115 0.4430329 0.0006495 4.847966 14.3972 0.91 5.4 17.2%
Sirard −75.37523 0.4304032 0.0006766 5.008838 14.40396 −0.0540935 0.91 5.4 17.2%
van Cauwenberghe −1.289946 0.5382766 0.0009392 0.95 3.5 10.0%
van Cauwenberghe 3.560949 0.5481894 0.0009111 −0.3984867 0.95 3.6 10.0%

Freedson Pate 1.921614 1.9832 −0.0021126 6.569524 0.77 26.7 12.3%
Pate 77.29174 0.2173512 0.0002469 26.4726 −23.04593 0.79 25.2 10.3%
Pate 1.407298 0.1061053 0.0004844 25.92285 −22.50468 6.517857 0.82 23.9 9.6%
Puyau 19.03004 3.247166 −0.0098703 10.42879 0.55 37.3 18.2%
Puyau 138.1948 −1.277124 0.001129 46.51387 −24.69632 0.55 37.6 16.9%
Puyau 18.54305 −1.104061 0.0011465 42.00134 −24.00351 10.20374 0.61 33.3 15.8%
Sirard 143.7481 3.14342 −0.0077486 0.56 37.6 18.8%
Sirard 17.76059 2.868255 −0.0067386 10.10434 0.62 35.3 17.3%
van Cauwenberghe 9.197958 2.546966 −0.0047027 8.482786 0.67 32.0 15.1%
van Cauwenberghe 105.8778 −0.284422 0.0004263 35.31705 −24.18957 0.68 31.4 13.1%
van Cauwenberghe 6.730405 −0.3484064 0.0007365 33.65001 −23.66149 8.386824 0.72 29.6 12.7%

Sirard Pate 6.972053 0.3998896 0.0007227 −0.74987 0.72 12.0 30.7%
Pate 53.22646 0.2395267 0.0009554 2.067009 −14.94238 0.85 8.3 22.6%
Pate 62.96109 0.2620144 0.0009197 1.96676 −14.97197 −0.7800015 0.85 8.2 22.4%
Puyau 0.429851 1.143558 −0.0005312 0.132389 0.76 11.8 27.7%
Puyau 64.64648 0.872056 0.0001365 2.735017 −16.44998 0.91 6.2 17.1%
Puyau 63.49087 0.876299 0.0001319 2.64906 −16.433 0.1080192 0.91 6.2 17.1%
Freedson −4.13197 0.2783899 −1.77046 0.55 13.9 38.4%
Freedson 20.65111 −0.0412707 0.0003909 2.618793 −8.375547 0.60 13.2 35.8%
Freedson 35.89801 −0.0153043 0.0003738 2.637629 −8.126762 −1.654241 0.61 13.0 35.2%
van Cauwenberghe 0.2340504 0.7760613 −0.4056065 0.76 11.6 27.8%
van Cauwenberghe 59.95077 0.4970589 0.0010028 1.835858 −15.72771 0.90 6.7 18.9%
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redicted MVPA estimate from other cutpoints. These plots represent the
est and worst models from Table 1.

rously developed methods for calibration and predict what
MI would be had all other estimates used that same method
f calibration.

This analogy, while far-fetched, is precisely what the phys-
cal activity field has been doing from the application of
ifferent cutpoints to estimate MVPA. This study provides
potential solution to the issue of CNE by developing pre-
iction equations that can convert MVPA estimates from
ne set of cutpoints (PY, SR, FR, PT, VC) into MVPA
erived from another set of cutpoints (PY, SR, FR, PT, VC).
ur results indicate that such a procedure provides suffi-

iently precise transformations of MVPA across cutpoints.
o illustrate the utility and accuracy of this equating system,

hree studies12,13,28 were identified that reported preschool-
rs’ accelerometer estimates of MVPA using one or more
ets of cutpoints (see Table 3). The results of these conver-

ions (using the equations from Table 2) clearly establish the
tility of such a system to transform MVPA estimates across
ifferent sets of cutpoints. For instance, in the VanCauween-
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erghe et al. study, conversions between the PT, SR, and VC
utpoints were nearly identical to those reported in the study.
hus, if one of these sets of cutpoints were to be widely
dopted (for example SR), published studies employing one
f the other sets of cutpoints (PT and VC) could be trans-
ormed into “what if” estimates of MVPA had the authors
riginally reported the data using these cutpoints. From this,
less biased estimate of MVPA could be obtained and used

o inform policy decisions.
We recognize that the original cutpoints used in this com-

arison (PT, SR, PY, VC and FR) were developed with
ome degree of error, and concede that the prediction equa-
ions offered here contribute additional error. However, we

ust ask ourselves which is the lesser of two evils; having
idely disparate estimates of MVPA that suggest preschool-

rs accumulate anywhere from 18 min of MVPA based on PY
utpoints29 to 280 min of MVPA based on FR cutpoints30 or
system with acceptable error that allows for aggregation of
ata that leads to a clearer picture of physical activity esti-
ates for that population-based on VC study28: 91.2 min (PT)

s. 55.2 (VC) vs. 20.8 min (SR) or 59.2 min vs. 55.2 min vs.
8.0 min? We argue for the latter, particularly in the absence
f universally agreed upon cutpoints and the substantial dif-
erences among estimates of MVPA across the cutpoints.

When developing guidelines for physical activity, the
sage of such an equating scheme can, at minimum, provide a
ommon set of accelerometer cutpoints on which study find-
ngs are evaluated. This would help establish the “mass of
igh quality and consistent evidence” across studies that has
een advocated for in past years. It is anticipated this proce-
ure could be replicated for other age groups or populations
o provide similar standardization. Large scale studies, such
s NHANES, provide sufficient sample size and age ranges
n order to develop additional conversion equations so that
niformity in MVPA estimates may be reached. Similar to
he method presented here, the most rigorously developed
utpoints for a particular population or cutpoints validated
n independent validation studies31 could be used as the cri-
erion into which predictions from other cutpoints could be

ade. Moreover, developing an equating system among dif-
erent types of accelerometers (e.g., ActiGraph and Actical)
s necessary in order to pool together MVPA estimates from
tudies using different measures of MVPA.

In future studies, there are several issues that need to be
ddressed. First, the procedure to develop the equations in this
tudy resulted in reasonably accurate conversions between
utpoints. Additional work needs to explore alternative mod-
ling techniques that would provide even greater precision,
long with the addition of other salient characteristics of the
ample. However, the sample characteristics evaluated in the
odels were based on commonly reported demographics.
his is a critical point when attempting to develop equations
n that the information used needs to be readily available (i.e.,
eported in empirical studies). Finally, all accelerometer data
n the CHAMPS study were collected in 15 s epochs. It is
nclear how converting from 15 s epoch to a 60 s epoch and

I
o
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ice versa would impact the precision of the estimates. Stud-
es have demonstrated that smaller epochs result in higher
stimates of MVPA in relation to accelerometer data collected
n large ones. Thus, future studies developing conversion
quations need to take this into account.

. Conclusion

The inability to make comparisons of accelerometer-
erived MVPA estimates from different studies has hampered
he physical activity field. While accelerometers offer
romise, their use has generated critical questions. Until
ow, no solutions to this issue of CNE have been provided.
he potential solution proposed here demonstrates sufficient
ccuracy to allow comparisons across five sets of cutpoints
sed for measuring MVPA of preschool-aged youth. With
hese conversions, data across studies can be compared and
ggregated so that the landscape of preschool-aged youth
hysical activity can be better understood. Future research
hould attempt to validate these equations in separate sam-
les in addition to exploring the utility of this approach with
ther age groups where multiple sets of cutpoints are used to
erive MVPA.

ractical implications

The prediction equations developed herein allow for syn-
thesis of data from four of the most commonly reported,
and one of the most newly developed, accelerometer cut-
points for deriving MVPA estimates of preschool-aged
children, which was previously not possible.
Synthesizing the accelerometer-derived MVPA estimates
of preschool-aged children can help to develop a clearer
picture of the population prevalence of physical (in)activity
of in this population.
With a clearer picture of prevalence of preschoolers’ phys-
ical (in)activity, researchers and policy makers interested
in children’s physical activity can make better-informed
decisions for future research and policy.
Validation of the method developed here in other popula-
tions, potentially allows for improved aggregation of data
and clearer physical activity estimates in populations other
than preschool-aged children.
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